
Raypier Documentation
Release 0.1

Bryan Cole

Jun 22, 2021

CONTENTS

1 Introduction to Raypier 3

2 Build and Installation 5

3 The Components of a Raypier Model 7

4 Basic Usage 9

5 Exploring the GUI 13

6 Jupyter Integration 17

7 RayCollection and Ray Objects 19
7.1 Creating RayCollections . 20

8 Ray Sources 23
8.1 Ray Field Sources . 23

9 The General Optic Framework 25
9.1 Shapes . 25
9.2 Surfaces . 26
9.3 Materials . 26

10 Other Optic Types 29
10.1 Apertures . 29
10.2 Prisms . 29
10.3 Waveplates . 29
10.4 Beamsplitters . 29
10.5 Diffraction Gratings . 29
10.6 Corner-cube retro-reflectors . 29
10.7 Off-axis ellisoids . 29

11 Gaussian Beamlet Propagation 31
11.1 Raypier Gausslet Implementation . 31
11.2 Evaluating the E-field . 32
11.3 Beam Decomposition . 32

12 Distortions 35
12.1 Zernike Polymonial Distortions . 37

13 Cython branch: How to Add New Optics 41
13.1 Creating a new Face . 41

i

13.2 Creating a new Traceable . 42
13.3 Custom Interface Materials . 43
13.4 Cython Tips and Tricks . 43

14 Examples 45
14.1 Simulating a Bessel Beam . 45
14.2 Fresnel Diffraction From A BeamStop . 48
14.3 Michelson Interferometer . 52
14.4 Temporal Focusing Microscope . 55

15 API Reference 61
15.1 raypier.achromats . 61
15.2 raypier.apertures . 61
15.3 raypier.aspherics . 61
15.4 raypier.bases . 61
15.5 raypier.beamsplitters . 61
15.6 raypier.beamstop . 61
15.7 raypier.chirp_result . 61
15.8 raypier.constraints . 61
15.9 raypier.corner_cubes . 61
15.10 raypier.decompositions . 61
15.11 raypier.diffraction_gratings . 61
15.12 raypier.dispertion . 61
15.13 raypier.distortions . 64
15.14 raypier.editors . 64
15.15 raypier.ellipsoids . 64
15.16 raypier.faces . 64
15.17 raypier.fields . 64
15.18 raypier.gausslet_sources . 64
15.19 raypier.general_optic . 64
15.20 raypier.intensity_image . 64
15.21 raypier.intensity_surface . 64
15.22 raypier.lenses . 64
15.23 raypier.materials . 64
15.24 raypier.mirrors . 64
15.25 raypier.parabolics . 64
15.26 raypier.prisms . 64
15.27 raypier.probes . 64
15.28 raypier.results . 64
15.29 raypier.shapes . 64
15.30 raypier.sources . 64
15.31 raypier.splines . 64
15.32 raypier.step_export . 64
15.33 raypier.tracer . 64
15.34 raypier.utils . 64
15.35 raypier.vtk_algorithms . 64
15.36 raypier.waveplates . 66
15.37 raypier.windows . 66
15.38 Raypier.Core . 66

15.38.1 raypier.core.ctracer . 66
15.38.2 raypier.core.cmaterials . 69
15.38.3 raypier.core.cfaces . 73
15.38.4 raypier.core.cfields . 73
15.38.5 raypier.core.cshapes . 73

ii

15.38.6 raypier.core.cdistortions . 73
15.38.7 raypier.core.tracer . 74
15.38.8 raypier.core.fields . 74
15.38.9 raypier.core.gausslets . 75
15.38.10raypier.core.find_focus . 75
15.38.11raypier.core.utils . 75
15.38.12raypier.core.unwrap2d . 75

16 Indices and tables 77

Python Module Index 79

Index 81

iii

iv

Raypier Documentation, Release 0.1

Contents:

CONTENTS 1

Raypier Documentation, Release 0.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO RAYPIER

Raypier is a non-sequential optical ray-tracing program. It is intended as a design tools for modelling optical systems
(cameras, imaging systems, telescopes etc.).

The main features of ray-trace are:
• Non-sequential tracing (no need to specify the order of optical components)

• Physical optics propagation with “Gausslet” tracing and beam decomposition

• Nice visualisation of the traced result

• Live update to the traced result as the user adjusts the model

• Reasonable performance (tracing algorithms runs at C-speed using Cython)

• STEP export of models for integration with CAD design (using PythonOCC)

• Saving / Loading models in YAML format.

• Trace rays with full polarisation and phase information

• Define Zernike Polynomial sequences and apply them as distortions to surfaces

• Dielectric Materials with simple-coating supported, including dispersion

• A basic library of materials (from RefractiveIndex.info)

• Various analysis algorithms including E-field evaluation by sum-of-Gaussian-Modes, and dispersion cal-
culations for ultra-fast optics applications.

At present, the primary means of using raypier is to create your model in the form of a python script. However, it is
possible to launch an empty model and then add in components from the GUI / Menu.

A minimal empty model looks like:

from raypier.api import RayTraceModel
model = RayTraceModel()
model.configure_traits()

This opens a GUI window from which you can add model objects using the Insert menu.

3

Raypier Documentation, Release 0.1

4 Chapter 1. Introduction to Raypier

CHAPTER

TWO

BUILD AND INSTALLATION

Installing the dependencies is probably the biggest hurdle to using Raypier. The conda package/environment manager
is far and away the easiest means of getting all the requirements installed.

Once you have the requirements, building raypier requires a compiler. The usual process of:

python setup.py build
sudo python setup.py install

should work [no sudo if you’re on Windows]. I’ve never tried building on a Mac.

If I could figure out how the heck conda-forge worked, I’d probably use it.

5

Raypier Documentation, Release 0.1

6 Chapter 2. Build and Installation

CHAPTER

THREE

THE COMPONENTS OF A RAYPIER MODEL

The RayTraceModel object is a container for the following components:

• Optics - these represent your optical elements like lenses, mirrors polarisers etc.

• Sources - these generate the input rays for the model. The sources also hold the traced rays output of the tracing
operation

• Probes - These are objects which select or sample the tracing operation result. Probes have a 3D position and
orientation.

• Results - Results represent calculated quantities to be evaluated after each trace. Results do not have a 3D
position.

• Constraints - Constraints are auxillary objects used to co-ordinate the parameters of a model for more convenient
manipulation.

While all of the above objects are optional, you probably want at least one source object in your model (otherwise, the
result will be rather uninteresting).

7

Raypier Documentation, Release 0.1

8 Chapter 3. The Components of a Raypier Model

CHAPTER

FOUR

BASIC USAGE

I recommend writing models as a script, then calling RayTraceModel.configure_traits() on the model to view
the model in the GUI.

The basic method of model construction is to create instances of all the optical components you need, create one or more
source-objects, and whatever probes, result or constraint objects, then give them all to an instance of RayTraceModel.
For example:

from raypier.api import RayTraceModel, GeneralLens, ParallelRaySource, SphericalFace,␣
→˓CircleShape, OpticalMaterial

Build a couple of lenses
shape = CircleShape(radius=12.5)
f1 = SphericalFace(curvature=-50.0, z_height=0.0)
f2 = SphericalFace(curvature=50.0, z_height=5.0)
m = OpticalMaterial(glass_name="N-BK7")
lens1 = GeneralLens(centre=(0,0,0),

direction=(0,0,1),
shape=shape,
surfaces=[f1,f2],
materials=[m])

lens2 = GeneralLens(centre=(0,0,100.0),
direction=(0,0,1),
shape=shape,
surfaces=[f1,f2],
materials=[m])

Add a source
src = ParallelRaySource(origin=(0,0,-50.0),

direction=(0,0,1),
rings=5,
show_normals=False,
display="wires",
opacity=0.1)

model = RayTraceModel(optics=[lens1,lens2],
sources=[src])

###Now open the GUI###
model.configure_traits()

Here’s our model:

9

Raypier Documentation, Release 0.1

If we set show_normals=True on the source object, the rendering show the norma-vectors at each surface intersection.
This is a useful sanity check to be sure your model is behaving physically.

10 Chapter 4. Basic Usage

Raypier Documentation, Release 0.1

Retracing of the model occurs whenever any parameter changes. You can explicitly force a re-trace using the
RayTraceModel.trace_all() method. I.e.:

model.trace_all()

You can access the results of the trace as the RayCollection.traced_rays list on the source object. E.g.:

for rays in src.traced_rays:
one_ray = rays[0]
print(one_ray.origin, one_ray.accumulated_path)

Sometimes, having the model re-trace on every change isn’t what you want (for example, if you’re doing a batch
calculation, or running an optimisation). You can block re-tracing using the hold_off() context manager. I.e.:

with model.hold_off():
lens1.shape.radius=10.0
src.origin=(0,0,-100.0)

The model should re-trace automatically on exiting the context-manager.

11

Raypier Documentation, Release 0.1

12 Chapter 4. Basic Usage

CHAPTER

FIVE

EXPLORING THE GUI

Raypier is based on the Traits/TraitsUI framework. The Traits library provides a notification framework and improved
type-declaration. TraitsUI is a GUI framework that extends Traits to make developing custom GUIs fast and easy. The
UI for any traited object can be invoked with a call to my_object.configure_traits(). Typically, I recommend you define
your base optical model in a script where an instance of RayTraceModel is created, then launch ui GUI with a call
to the model’s configure_traits() method. Lets see this in action. Running the michelson_interferometer_example.py
script, you should see the following window

The main window is divided into 4 main regions. At the upper left, we have the main 3D model view. <left-click>-
drag to rotate the view, <middle-click>-drag to pan and <right-click>-drag to zoom. You can also zoom using the
mouse-wheel.

13

Raypier Documentation, Release 0.1

The upper right panel shows the model tree, with sub-groups for each of the model components types. Selecting any
one model component object displays the properties-view for that object in the lower-right panel.

Double-clicking any object in the tree-view will open another properties-view window. This is useful for when you
want to have the properties of multiple objects open at once (N.B. this doesn’t yet work for the image view and surface
view objects. I plan to lift this restriction later on).

For example, here’s the properties view for the Mirror 1 object:

All property windows edit their objects “live”. The model will re-calculate itself automatically whenever anything
changes, so you can explore how the ray-tracing results change as you move/adjust objects.

The bottom-left region contains two tabs: a python console and the Constraints view. There is no constraints in the
example shown.

Within scope of the python terminal window, the model object is bound to the name self. While the rest of the model
components can be accessed from this reference, another way to access objects is to simply drag and drop items from
the tree-view into the terminal window. These will be added to the local namespace of the terminal using either the
name of the object (as given in the tree), or, if the name is not a valid python name (e.g. it contains spaces) it will
simply be called “dragged”.

At the top of the main window there is a menu-bar with two menus. The File. . . menu lets you save/load models in
YAML format. However, I strongly advise against using this as a means of persisting models. The internals of Raypier
are under active development and I don’t give any guarantees that the YAML format is stable. I prefer to create my
models as python scripts. This way, if the API changes, one can update the code to restore the model function. Whereas,
if a class-name or API changes, a YAML file will simply refuse to load.

Model components can be added from the “Insert. . . ” menu. The delete or rename components, use the context-

14 Chapter 5. Exploring the GUI

Raypier Documentation, Release 0.1

sensitive menu in the Tree View (<right-click> on a tree item).

15

Raypier Documentation, Release 0.1

16 Chapter 5. Exploring the GUI

CHAPTER

SIX

JUPYTER INTEGRATION

Sometimes the live GUI isn’t what you want. Sometimes you want to manipulate or analyse a model in a jupyter
notebooks environment. If you want to display the model view in a notebook, you simply call the ipython_view()
method of the model object to show the view. The arguments width and height specify the size of the displayed image.
The optional argument view is a dictionary describing the view camera parameters.

class raypier.tracer.RayTraceModel

raypier.tracer.RayTraceModel.ipython_view(width: int, height: int, view={})→ view dict
Renders the 3D view of the model as a bitmap to display in a jupyter notebook. The image is displayed along
with a set of ipywidget buttons to allow the user to rotate, pan and zoom the view.

The method returns a dict containing the view pan/zoom/rotation state. This dict can then be passed to subsequent
calls to ipython_view() as the view keyword argument, to create another view with similar state.

An example of jupyter notebook integration can be found here: Jupyter Notebook Example The original .ipynb docu-
ment is included in the examples folder.

Note, the view-control buttons are not present in the html-output of the link above. You need to run the notebook in a
jupyter notebook server to get the widgets.

17

_static/Jupyter_Notebook_Example.html

Raypier Documentation, Release 0.1

18 Chapter 6. Jupyter Integration

CHAPTER

SEVEN

RAYCOLLECTION AND RAY OBJECTS

The most important object in Raypier is the RayCollection. This is (as you might guess from the name) a 1D array of
Ray objects.

The Ray object (raypier.core.ctracer.Ray) represents a single ray, and wraps an underlying C-structure. The
single Ray object exists as a convenience for python scripting. The actual ray-tracing operation operates only RayCol-
lection objects.

Ray objects have the following attributes:

• origin - A 3-vector (tuple) of floats giving the start-point for the ray

• direction - A 3-vector giving the direction of the ray. This is always normalised to unit length

• E_vector - A 3-vector defining the polarisation-axes. This vector is unit-length and orthogonal to the direction
vector

• normal - A 3-vector giving the unit-length surface normal of the face from which the ray originated. May be
undefined for rays which have not originated from a face intersection

• refractive_index - a complex value giving the refractive index of the material through which the ray has propa-
gated

• E1_amp - the complex electric field amplitude for polarisations parallel to the E_vector axis

• E2_amp - the complex electric field amplitude for the polarisation orthogonal to the E_vector axis

• length - the geometric length of the ray from it’s start-point to its termination at an intersecting face (or may be
set to the max length of the ray, it no intersection has occured

• phase - An additional phase-factor that may be introduced by face interactions. Currently, only used to hold the
“grating phase” arising from diffraction-grating surfaces.

• accumulated_path - the total optical path length accumulated from the parent ray plus (parent length * real part
of refractive index)

• wavelength_idx - a index into the wavelength list (held by both the RayCollection and/or source object)

• parent_idx - the index of the parent-ray in the parent RayCollection object

• end_face_idx - the index into the Global Face List of the face at which the ray terminates (i.e. intersects). The
Global Face List can be accessed on the all_faces atrtibure of the RayTraceModel object.

• ray_type_idx - a bitfield indicating is the ray is a reflected or transmitted ray. Other ray-types may be defined in
future

Rays have some additional read-only properties defined:

• power - the sum of squares of the E1_amp and E2_amp components

• amplitude - the square-root of the power

19

Raypier Documentation, Release 0.1

• jones_vector - Returns a 2-tuple (alpha, beta) representing the Jones Vector describing the polarisation state of
the ray. See _https://en.wikipedia.org/wiki/Jones_calculus#Jones_vector

• E_left - Returns the complex electric field amplitude for the left circular polarisation state

• E_right - Returns the complex electric field amplitude for the right circular polarisation state

• ellipticity - Returns the ratio of the power in the right-hand polarisation state to the left-hand polarisation state
I.e. A value of +1 indicates 100% right-circular polarisation, 0 indicates linear polarisation, -1 indicates 100%
left polarisation.

• major_minor_axes - Returns a 2-tuple of unit-length vectors describing the major and minor polarisation axes

RayCollection objects have substantially the same attributes/properties as the Ray object, except that each property
returns a numpy array containing the values for all rays in the collection.

RayCollection objects are iterable (yielding single Rays) and subscriptable.

7.1 Creating RayCollections

If you need to create a RayCollection with a large number of rays (say, if you are writing your own Source class), the
easiest method is to create a numpy array with the equivalent numpy dtype:

>>> from raypier.api import ray_dtype, RayCollection
>>> print(ray_dtype)
[('origin', '<f8', (3,)),
('direction', '<f8', (3,)),
('normal', '<f8', (3,)),
('E_vector', '<f8', (3,)),
('refractive_index', '<c16'),
('E1_amp', '<c16'),
('E2_amp', '<c16'),
('length', '<f8'),
('phase', '<f8'),
('accumulated_path', '<f8'),
('wavelength_idx', '<u4'),
('parent_idx', '<u4'),
('end_face_idx', '<u4'),
('ray_type_id', '<u4')]

Once you’ve created a numpy array with this dtype, you populate its fields as required. You can then create a RayCol-
lection instance from this array using :py:meth:`RayCollection.from_array’ classmethod. E.g.:

>>> import numpy
>>> my_rays = numpy.zeros(500, ray_dtype)
>>> my_rays['direction'] = numpy.array([[0,1,1]],'d')
<... assign other members as necessary ...>
>>> rc = RayCollection.from_array(my_rays)

Note, data is always copied to and from RayCollections. The reason why we don’t use memory views is that RayCol-
lections have a dynamic size and can grow in size by re-allocation of their memory. Numpy array, by contrast are static
in size.

Likewise, we can convert a RayCollection to a numpy array using its RayCollection.copy_as_array() method.:

20 Chapter 7. RayCollection and Ray Objects

Raypier Documentation, Release 0.1

>>> arr = rc.copy_as_array()

7.1. Creating RayCollections 21

Raypier Documentation, Release 0.1

22 Chapter 7. RayCollection and Ray Objects

CHAPTER

EIGHT

RAY SOURCES

Ray sources generate the input rays for the model. The Ray-source objects also hold the results of the trace, in the
traced_rays attribute, as a list of RayCollection objects. Each item in this list represents one “generation” of rays.

Ray source classes are subclasses of raypier.sources.BaseRaySource. Besides generating the input_rays (a
RayCollection instance) attribute as the input to the model, and holding the trace results in the traced_rays mem-
ber, the source objects also control the visualisation of the rays. The following visualisation-related attributes are
available.

class raypier.sources.BaseRaySource

display: enum(“pipes”, “wires”, “none”)
Indicates how the rays should be drawn.

opacity: float
Sets the opacity for the rays where 0.0 is fully transparent and 1.0 is fully opaque.

wavelength_list
An numpy.ndarray listing all the wavelengths used generated by this ray source.

max_ray_len: float
Sets the maximum length of the rays.

scale_factor: float
Adjusts the scaling for the rays and related glyphs such as normals-arrows.

show_start: bool
If True, a sphere glyph is displayed at the source origin.

show_normals: bool
If True, the normal-vectors at each ray intersection will be drawn.

class raypier.sources.SingleRaySource(raypier.sources.BaseRaySource)

8.1 Ray Field Sources

A further sub-catagory of ray-sources are Ray Field Sources, being subclasses of RayFieldSource. In addition to
generating the input_rays, Ray Field Source objects also generate the neighbours attribute. This is a (N,6) shaped
array of ints which gives the index of each rays immediate neighbour.

The neighbours data for each RayCollection object is derived from it’s parent RayCollection. They are evaluated lazily
so if neighbours are not required they don’t incure any penatly. Having neighbours present means that a RayCollection
object can be summed as a set of Gaussian modes to generate the E-field.

23

Raypier Documentation, Release 0.1

Ray Field Sources were a precursor to the Gausslets implementation and are now somewhat redundant. If you want
to include diffraction-effects, your starting point should be a Gausslet Source (see below). Ray Field Sources do not
include the effects of diffraction in the propagation of their parent rays. Ray Fields can thus give you the point-spread
function. One benefit of Ray Fields over Gausslet Sources would be that performance: without the need to trace
parabasal rays, we expect ray-tracing RayFields to be faster than the full Gausslet implementation.

24 Chapter 8. Ray Sources

CHAPTER

NINE

THE GENERAL OPTIC FRAMEWORK

The General Optic framework provides the most flexible means of defining optical components. The GeneralLens class
is an optic which is composed of:

• A shape (from raypier.shapes)

• A list of surfaces (from raypier.faces)

• A list of materials (from raypier.materials)

These are high-level objects which aim to streamline the process of configuring a custom optical element. The general
optic framework is appropriate for optical elements which fit the “planar” model of a outline defined in the XY-plane
with a surface sag defined in z as a function of (x,y). Many optics are not a good fit for this description (e.g. prisms)
and hence other sub-modules provide these components.

9.1 Shapes

Shapes define the 2D outline of the optic in its local XY-plane (remember that every component has its own local
coordinate system. The optic can have any position and orientation in the global frame of reference).

There are four shape primitives, at the time of writing:

• RectangleShape

• CircleShape

• PolygonShape

• HexagonShape

There is one more I have yet to implement, being EllipseShape.

Shapes support boolean operation so that they can be combined into more complex shapes. For example, to make a
rectangular lens with a hole in it. You simply XOR a RectangleShape and a CircleShape, as follows:

from raypier.api import CircleShape, RectangleShape

my_shape = RectangleShape(width=30,height=25) ^ CircleShape(radius=3.0)

Likewise, shapes support AND and OR, giving you the intersection and the union of the two shapes respectively.
Internally, NOT is also available but annoyingly, the VTK boolean operations for implicit functions don’t seem to offer
a way to invert them, so I couldn’t get the “not” visualisation to work.

25

Raypier Documentation, Release 0.1

9.2 Surfaces

The surfaces represent the geometry of the faces of the GeneralLens. While a simple singlet lens will have two surfaces,
a doublet will have 3. In fact, any number of surfaces can be added.

I wanted to call the surfaces list of the GeneralLens “faces” but faces is already over-used as an attribute name.

There are 7 core face types supported by the General Optic framework:

• Planar

• Spherical

• Cylinderical

• Conic (a conic surface of revolution)

• Aspheric

• Axicon

• Distortion

These all have a “mirror” boolean trait. If this is true, the face is considered 100% reflective. Otherwise, the reflection
and transmission characteristics will be derived from the dielectric material coefficients on either side of the surface.

The DistortionFace object is a special type of Face that wraps another “base face” with some sort of geometric distortion
function (for example, a Zernike polynomial function). The range of available distortion functions can be found in the
raypier.distortions module.

9.3 Materials

The materials list gives the optical properties of the dielectric on either side of each surface. For n surfaces, we need
n-1 materials.

Materials define their dispersion functions either as constant values, given as refractive index and absorption-coefficient,
or as functions obtained from a database of optical properties (taken from _https://refractiveindex.info/). In the later
case, you can specify the dielectric material by name e.g. “N-BK7”.

Put all this together, here’s in example:

s1 = RectangleShape(width=30,height=25) ^ CircleShape(radius=3.0)

f1 = SphericalFace(z_height=8.0, curvature=50.0)
m1 = OpticalMaterial(from_database=False, refractive_index=1.5)
f2 = PlanarFace(z_height=1.0)
m2 = OpticalMaterial(from_database=False, refractive_index=1.1)
f3 = SphericalFace(z_height=-8.0, curvature=-50.0)
m3 = OpticalMaterial(from_database=False, refractive_index=1.6)
f4 = PlanarFace(z_height=-9.0, invert=False)

faces = [f1,f2,f3,f4]
mats = [m1, m2, m3]

lens = GeneralLens(centre=(0,0,50),
shape=s1,
surfaces=faces,

(continues on next page)

26 Chapter 9. The General Optic Framework

Raypier Documentation, Release 0.1

(continued from previous page)

materials=mats)

src = HexagonalRayFieldSource(gauss_width=5.0,
display="wires",
opacity=0.1,
show_normals=True)

model = RayTraceModel(optics=[lens], sources=[src])

model.configure_traits()

Gives us the following result:

9.3. Materials 27

Raypier Documentation, Release 0.1

28 Chapter 9. The General Optic Framework

CHAPTER

TEN

OTHER OPTIC TYPES

For optic-types which don’t fit the General Optics framework, we have support for each type in their own submodules.
There are also a few submodules for optics which predate the General Optics framework.

10.1 Apertures

10.2 Prisms

10.3 Waveplates

10.4 Beamsplitters

10.5 Diffraction Gratings

I intend to migrate the DiffractionGratingFace to the GeneralOptic framework.

10.6 Corner-cube retro-reflectors

10.7 Off-axis ellisoids

29

Raypier Documentation, Release 0.1

30 Chapter 10. Other Optic Types

CHAPTER

ELEVEN

GAUSSIAN BEAMLET PROPAGATION

Gaussian beams are a solution to the paraxial wave equation. It turns out that the propagation of such modes can be
represented by a chief ray and a number of skew marginal rays which define the 1/e^2 edge (and divergence) of the
beam. It has been shown that such the propagation of such modes obeys the rules of geometric ray tracing (i.e. Snell’s
law).

An arbirary wavefront can be decomposed into a set of paraxial Gaussian beamlets (called “Gausslets” henceforth) and
propagated through an optical system using raytracing. This method provides a convenient route to extend a geometric
ray-tracing algorithm to obtain a physical-optics modelling solution. The method has been successfully employed in a
number of commercial optical modelling packages, such as CODE-V, FRED and ASAP. Given a set of Gausslets, the
vector (E) field can be evaluated at any position by summing the fields from each Gausslet.

The method is accurate provided some restrictions are observed:

• The Gausslets must remain paraxial (i.e. more-or-less collimated).

• Individual Gausslets should interact with refracting or reflecting surfaces over a sufficiently small area such that
the surface may be considered locally parabolic.

Typically, if either of these restrictions are violated, the solution is to interrupt the ray-tracing operation to evaluate the
field, then decompose the field into a new set of Gausslets. In cases where the incident Gausslet is sampling too large
an area of the surface for it to be considered parabolic, the field is decomposed into a grid of smaller Gausslets. At the
other extreme, Gausslets incident on a small aperture may be decomposed into a set of spatially overlapped Gausslets
with range of directions. Such an angle decomposition is sometimes known as a “Gabor Decomposition”.

11.1 Raypier Gausslet Implementation

Raypier support Gausslet tracing through a GaussletCollection data-structure. Gausslets are an extension of the Ray
data structure. In fact, the dtype for a Gausslet object looks like:

para_dtype = [('origin', '<f8', (3,)), ('direction', '<f8', (3,)), ('normal', '<f8', (3,
→˓)), ('length', '<f8')]

gausslet_dtype = [('base_ray', ray_dtype), ('para_rays', para_dtype, (6,))]

I.e. we define a dtype for the parabasal rays which contains only the geometric information (origin, direction, length
etc.) and omits any E-field polarisation or amplitude information. The gausslet is then composed of one base_ray (with
regular ray_dtype) and 6 parabasal rays (with para_dtype).

Gausslets have their own set of predefined source-objects, found in raypier.gausslet_sources.

31

Raypier Documentation, Release 0.1

11.2 Evaluating the E-field

Algorithms for evaluation of E-fields are provided in raypier.core.fields

The nice thing about Gausslet ray-tracing is that you can evaluate the E-field at any point in your model. For script-
based analysis, you can give any GaussletCollection object (obtained from a source-object after a tracing operation) to
the raypier.core.fields.eval_Efield_from_gausslets() function.

11.3 Beam Decomposition

When a Beam-decomposition object intercepts a ray during the tracing operation, instead of immediately generating
child rays as most other Traceable objects do, the decomposition objects simply store the intercepted ray. At the
completion of tracing of the current ray generation (i.e. GaussletCollection), any decomposition-objects which have
received one or more rays then perform their decomposition-algorithm to generate a new set of rays to be added to the
other rays created in the last generation. The new rays created by the decomposition process will, in general, not join
originate from the end-point of the input-rays.

High level Optics objects for beam decomposition are provided here.

class raypier.gausslets.PositionDecompositionPlane(BaseDecompositionPlane)
Defines a plane at which position-decomposition will be beformed.

radius
Sets the radius used for capturing incoming rays. Rays outside of this will “miss”

curvature
An approximate radius-of-curvature to the beam focus. This is used to improve the phase-unwrapping of
the wavefront. The default is zero, which means a plane-wave is assumed. Negative values imply a focus
behind the decomposition plane (i.e. on the opposite side to the plane direction vector).

resolution
Sets the resampling density of the decomposition, in terms of the number of new rays per radius extent.

blending
Sets the blending values for the new rays. The new rays will have Gaussian 1/e**2 intensity widths equal
to spacing/blending, where the spacing value is radius/resolution.

class raypier.gausslets.AngleDecomposition(BaseDecompositionPlane)
Defines a plane at which Gabor (angle)-decomposition is to be performed.

sample_spacing
Sets the sample-spacing at the decomposition plane, in microns.

width
A value in the range 1->512 to set the number of samples along the width of the sample-plane.

height
A value in the range 1->512 to set the number of samples along the height of the sample-plane.

mask
A 2d array with shape matching the (width, height) and dtype numpy.float64 . The array values should be
in the range 0.0 -> 1.0. This will be used to mask the input E-field.

max_angle
Limits the angular divergence of the outgoing rays.

The low-level beam-decomposition algorithms are found in this module. Two types of decomposition are available:
position-decomposition and angle-decomposition. Use the former when the Gausslets are found to be too wide at a
particular surface in the optical path to re-sample the beam onto a set of more compact Gausslets. The later is used to

32 Chapter 11. Gaussian Beamlet Propagation

Raypier Documentation, Release 0.1

simulate the effect of apertures much smaller than the Gausslet widths, such that each Gausslet can be treated like a
plane-wave and the field-distribution found using a 2d Fourier transform.

11.3. Beam Decomposition 33

Raypier Documentation, Release 0.1

34 Chapter 11. Gaussian Beamlet Propagation

CHAPTER

TWELVE

DISTORTIONS

The raypier.distortions module contains objects representing distortions of a given face. The Distortion objects
are intended to be used with the raypier.faces.DistortionFace class (part of the General Optic framework).
Fundamentally, any 2D function can be implemented as a Distortion. At present, on a single type is implemented. I
intend to implement a general Zernike polynomial distortion class. Other distortion functions are easy to add.

An example of their usage:

from raypier.tracer import RayTraceModel
from raypier.shapes import CircleShape
from raypier.faces import DistortionFace, PlanarFace, SphericalFace
from raypier.general_optic import GeneralLens
from raypier.materials import OpticalMaterial
from raypier.distortions import SimpleTestZernikeJ7, NullDistortion
from raypier.gausslet_sources import CollimatedGaussletSource
from raypier.fields import EFieldPlane
from raypier.probes import GaussletCapturePlane
from raypier.intensity_image import IntensityImageView
from raypier.intensity_surface import IntensitySurface

shape = CircleShape(radius=10.0)
f1 = SphericalFace(z_height=0.0, curvature=-25.0)
f2 = PlanarFace(z_height=5.0)

dist = SimpleTestZernikeJ7(unit_radius=10.0, amplitude=0.01)
#dist = NullDistortion()
f1 = DistortionFace(base_face=f1, distortion=dist)

mat = OpticalMaterial(glass_name="N-BK7")
lens = GeneralLens(shape=shape, surfaces=[f1,f2], materials=[mat])

src = CollimatedGaussletSource(radius=8.0, resolution=6,
origin=(0,0,-15), direction=(0,0,1),
display="wires", opacity=0.2, show_normals=True)

src.max_ray_len=50.0

cap = GaussletCapturePlane(centre = (0,0,50),
direction= (0,0,1),
width=20,

(continues on next page)

35

Raypier Documentation, Release 0.1

(continued from previous page)

height=20)

field = EFieldPlane(detector=cap,
align_detector=True,
size=100,
width=1,
height=1)

img = IntensityImageView(field_probe=field)
surf = IntensitySurface(field_probe=field)

model = RayTraceModel(optics=[lens], sources=[src], probes=[field,cap],
results=[img,surf])

model.configure_traits()

This example shows a high-amplitude distortion, for illustrative purposes.

During the ray-tracing operation, the intersections with distorted faces are found using an iterative algorithm similar
to Newton- Ralphson. Typically, the intersection is found with 2 to 3 calls to the intercept-method of the underlying
face. Distortions are expected to be small deviations from the underlying face (maybe no more than a few wavelengths
at most). If you make the amplitude of the distortion large, the under of iterations to converge will increase and the
ray-tracing hit take a performance hit. For very large distortions, the intercept my fail altogether.

36 Chapter 12. Distortions

Raypier Documentation, Release 0.1

One could, in principle, wrap multiple DistortionFaces over other DistortionFaces. However, I would expect the per-
formance penalty to be quite severe. In this case, A better plan would be to implement a specialised DistortionList
object which can sum the distortion-values from a list of input Distortions. On my todo list . . .

In python scripting, one can simply evaluate any Distortion object given some x- and y-coordinates as numpy arrays.
This is useful for testing. For example:

from raypier.distortions import SimpleTestZernikeJ7
import numpy

dist = SimpleTestZernikeJ7(unit_radius=10.0, amplitude=0,1)

x=y=nmupy.linspace(-10,10,500)
X,Y = numpy.meshgrid(x,y)

Z = dist.z_offset(X.ravel(),Y.ravel())
Z.shape = X.shape #restore the 2D shape of the Z array

Distortions have an additional method, Distortion.z_offset_and_gradient(). This returns a array of shape
(N,3) where the input X and Y arrays have length N. The first two columns of this array contain the gradient of the
distortion, dZ/dX and dZ/dY respectively. The third column simply contains Z. Returning both Z and it’s gradient turns
out to be useful at the C-level during tracing. I.e.:

grad = dist.z_offset_and_gradient(X.ravel(), Y.ravel()).reshape(X.shape[0], X.shape[1],3)
dZdX = grad[...,0]
dZdY = grad[...,1]
Z = grad[...,2]

12.1 Zernike Polymonial Distortions

More general distortions can be applied using the raypier.distortions.ZernikeSeries class.

As previously, instances of this object are passed to a raypier.faces.DistortionFace , along with the base-surface
to which the distortion is to be applied.

An example of the this class in action can be seen here:

from raypier.tracer import RayTraceModel
from raypier.shapes import CircleShape
from raypier.faces import DistortionFace, PlanarFace, SphericalFace
from raypier.general_optic import GeneralLens
from raypier.materials import OpticalMaterial
from raypier.distortions import SimpleTestZernikeJ7, NullDistortion, ZernikeSeries
from raypier.gausslet_sources import CollimatedGaussletSource
from raypier.fields import EFieldPlane
from raypier.probes import GaussletCapturePlane
from raypier.intensity_image import IntensityImageView
from raypier.intensity_surface import IntensitySurface
from raypier.api import Constraint

from traits.api import Range, observe
(continues on next page)

12.1. Zernike Polymonial Distortions 37

Raypier Documentation, Release 0.1

(continued from previous page)

from traitsui.api import View, Item, VGroup

shape = CircleShape(radius=10.0)

#f1 = SphericalFace(z_height=0.0, curvature=-25.0)

f1 = PlanarFace(z_height=0.0)
f2 = PlanarFace(z_height=5.0)

dist = ZernikeSeries(unit_radius=10.0, coefficients=[(i,0.0) for i in range(12)])
f1 = DistortionFace(base_face=f1, distortion=dist)

class Sliders(Constraint):
"""Make a Constrain object just to give us a more convenient UI for adjusting␣

→˓Zernike coefficients.
"""
J0 = Range(-1.0,1.0,0.0)
J1 = Range(-1.0,1.0,0.0)
J2 = Range(-1.0,1.0,0.0)
J3 = Range(-1.0,1.0,0.0)
J4 = Range(-1.0,1.0,0.0)
J5 = Range(-1.0,1.0,0.0)
J6 = Range(-1.0,1.0,0.0)
J7 = Range(-1.0,1.0,0.0)
J8 = Range(-1.0,1.0,0.0)

traits_view = View(VGroup(
Item("J0", style="custom"),
Item("J1", style="custom"),
Item("J2", style="custom"),
Item("J3", style="custom"),
Item("J4", style="custom"),
Item("J5", style="custom"),
Item("J6", style="custom"),
Item("J7", style="custom"),
Item("J8", style="custom"),

),
resizable=True)

def _anytrait_changed(self):
dist.coefficients = list(enumerate([self.J0, self.J1, self.J2, self.J3, self.J4,

self.J5, self.J6, self.J7, self.J8]))

mat = OpticalMaterial(glass_name="N-BK7")
lens = GeneralLens(shape=shape, surfaces=[f1,f2], materials=[mat])

src = CollimatedGaussletSource(radius=9.0, resolution=20,
origin=(0,0,-15), direction=(0,0,1),
display="wires", opacity=0.02,

(continues on next page)

38 Chapter 12. Distortions

Raypier Documentation, Release 0.1

(continued from previous page)

wavelength=1.0,
beam_waist=10.0,
show_normals=True)

src.max_ray_len=50.0

cap = GaussletCapturePlane(centre = (0,0,50),
direction= (0,0,1),
width=20,
height=20)

field = EFieldPlane(centre=(0,0,30),
detector=cap,
align_detector=True,
size=100,
width=20,
height=20)

img = IntensityImageView(field_probe=field)
surf = IntensitySurface(field_probe=field)

model = RayTraceModel(optics=[lens], sources=[src], probes=[field,cap],
results=[img,surf], constraints=[Sliders()])

model.configure_traits()

Here’s what the model looks like in the UI.

12.1. Zernike Polymonial Distortions 39

Raypier Documentation, Release 0.1

This example also demonstrates the use of a Constraints object to provide some UI controls for easier adjustment of
the relevant model parameters.

40 Chapter 12. Distortions

CHAPTER

THIRTEEN

CYTHON BRANCH: HOW TO ADD NEW OPTICS

When working with the cython raypier branch, be sure you have the latest Cython version installed (as of writing,
v0.12.1 was the latest).

13.1 Creating a new Face

Subclasses of raypier.core.ctracer.Face perform the mechanics of the ray-tracing operation. Most existing subclasses
are defined in cfaces.pyx. To define a new face object, two “C” methods need to be defined:

cdef double intersect_c(vector_t p1, vector_t p2)

Computes the intersection of a ray with the surface, where p1 and p2 are two points defining the start and end points
of an incoming ray, in the local coordinate system. The method returns a single floating-point value representing the
distance along the ray where an intersection occurs. If no intersection is found, a value <= 0 may be returned (I tend to
return zero, if no intersection occurs).

cdef vector_t compute_normal_c(vector_t p)

Computes the outward normal vector for the surface at the given point, p. These are also defined w.r.t. the local
coordinate system.

Note, these two methods are ‘cdef-methods’ and hence not callable directly from python. Be sure to type all the
variables you use, to be sure of good performance. Face objects also have python-callable methods compute_normal()
and intersect(). These call the cdef methods internally. Don’t bother trying to overload these from python as it won’t
work (and even if it did, performance would be horrible).

The vector_t structure is used to represent 3D points (i.e. it’s a 3d vector), and has .x and .y and .z members. Outside
the comfort of python/numpy, vector algebra is significantly less pleasant. The ctracer module defines a number of
inline functions to (partially) simplify working with vector_t’s. For vector arithmatic, you can use:

• addvv_(vector_t a, vector_t b) #add two vectors

• addvs_(vector_t a, double b) #adds a vector and a scalar

• multvv_(vector_t a, vector_t b) #multiplies two vectors

• multvs_(vector_t a, double b) #multiplies a vector and a scalar

etc.

Similar function are defined for subtraction and element-wise division. The ‘vv’ function denote operations on two
vectors, ‘vs’ denotes operations on a vector and a scalar. The trailing underscore is a convention I’m adopting to indicate
that the method is a ‘C’-method (i.e. not python callable).

Some of the other utility functions are:

cdef inline vector_t set_v(vector_t v, object O)

41

Raypier Documentation, Release 0.1

Takes a vector v and an 3-sequence O. Copies the values from the sequence into the vector and
returns it (why does it need the v argument, though?).

cdef inline double sep_(vector_t p1, vector_t p2)

Computed the linear separation between two points

cdef inline double dotprod_(vector_t a, vector_t b)

Calculates the dot-product of the given vectors

cdef inline vector_t cross_(vector_t a, vector_t b)

Calculates the vector-product of it’s arguments

cdef inline vector_t norm_(vector_t a)

Computes the normalised vector from its input (i.e. scales it’s input to unit magnitude).

cdef inline double mag_(vector_t a)

Calculates the magnitude of it’s input

cdef inline double mag_sq_(vector_t a)

Calculates the square of the magnitude of it’s input

cdef inline vector_t invert_(vector_t v)

Inverts it’s input

Most of the cdef functions and cdef-methods have companion def functions/methods which are callable from python
and wrap the associated cdef operation. These are mostly used in testing. The python-callable versions incure the
normal python interpreter overhead, and hence are not directly useful in the fast C-level tracing process.

The intersect_c and compute_normal_c cdef methods are all you need to make a new face. Obviously, you can add
additional methods / attributes to implement the functionality required.

You can optionally give your custom Face class a params attribute (define it as a class-attribute) which should contain
a list of attribute names which should be synchronised from the face owner to the face when a tracing operation is
initiated.

13.2 Creating a new Traceable

Traceables (i.e. subclasses of raypier.bases.Traceable) are the basic unit of an optical model. Most of the functionality
in the Traceable subclasses is to implement their VTK visual representation. The ray-tracing operation is handled by
Face objects. Traceables own an instance of a ctracer.FaceList which turn has a list of Face objects (I choose FaceList
has a list of faces, rather than FaceList is a list of faces, as it was simpler to implement). The FaceList contains the
coordinate transform which maps betwee global coords and the local coords of the Traceable. Thus, all Faces belonging
to a Traceable share a common transform.

To create a new Traceable, you subclass Traceable or some other more suitable subclass (transmitting optical com-
ponents can derive from raypier.bases.Optic, which provides a complex refractive index). You should define a new
_faces_default method which creates the FaceList for that object and populates it with the Faces appropriate to the
object. Simple synchronisation between the Traceable and the Faces can be handled using the params Face class
attribute described above. In most cases, more sophisticated synchronisation is required and can be handled using
trait-notifications for all traits on which the Faces depends.

The physics of ray-scattering (i.e. the generation of new rays at the point of intersection) is handled by
ctracer.InterfaceMaterial objects. InterfaceMaterial is an abstract base class. There are two concrete subclasses de-
fined in the ctracer module: PECMaterial and DielectricMaterial. The former represents a perfect metal reflector. The
later is a normal dielectric surface. Typically, an Optic (or Traceable subclass) will have an InterfaceMaterial trait. This

42 Chapter 13. Cython branch: How to Add New Optics

Raypier Documentation, Release 0.1

will be passed to it’s faces in the _faces_default method (so all faces share the same InterfaceMaterial). However, this
is not a requirement: faces can have independent materials, or share them.

13.3 Custom Interface Materials

InterfaceMaterial subclasses provide a cdef method:

cdef eval_child_ray_c(self, ray_t *old_ray,
unsigned int ray_idx,
vector_t point, vector_t normal,
RayCollection new_rays)

This is called for each ray intersection to create a new ray. The arguments are as follows:

old_Ray - a pointer to the incoming ray_t structure ray_idx - the index of the incoming ray in it’s RayCol-
lection array point - the position, in global coords, of the intersection normal - the normal vector of the
surface, at the point of intersection new_rays - the target RayCollection for new rays

This method should call new_rays.add_new_ray() to create as many new rays as necessary. Thus, multiple ray genera-
tion can occur at an intersection (as might be found for a diffracting interface material).

13.4 Cython Tips and Tricks

If you find performance is less than you expected, try running “cython -a yourfile.pyx” (replace yourfile.pyx with
whatever .pyx file you’re analysing, cfaces.pyx maybe). This produces a html-version of your file, with highlighting to
show where the python API is being invoced. The less yellow the better (and red-highlights indicate real performance
bottlenecks). This is a very cool feature of Cython.

Avoid cpdefs (i.e. methods with automatically created python wrappers), as extra overhead is incured to check for
python overloading.

Creating and destroying python objects is expensive (it invokes the garbage collector / changes ref-counts etc.). How-
ever, read-only access to items in lists is fast.

Surprisingly, I can find no speed benefit in passing parameters by reference, compared to passing by values (for fixed-
size types, at least).

13.3. Custom Interface Materials 43

Raypier Documentation, Release 0.1

44 Chapter 13. Cython branch: How to Add New Optics

CHAPTER

FOURTEEN

EXAMPLES

14.1 Simulating a Bessel Beam

A Pseudo-bessel beam can be created using an Axicon. Where the rays from opposing sides of the axicon interact, they
create a region of high intensity along the axis of the axicon. The interested properties of this beam is that it does not
diffract. Modelling this with Raypier is straightforward. We use a CollimatedGaussianBeamSource to create the input
wavefront.

from raypier.api import GeneralLens, AxiconFace, PlanarFace, OpticalMaterial,␣
→˓CircleShape,\

RayTraceModel, CollimatedGaussletSource, EFieldPlane, GaussletCapturePlane,␣
→˓IntensitySurface

from raypier.intensity_image import IntensityImageView

shape = CircleShape(radius=2.0)

face1 = PlanarFace(z_height=0.0)
face2 = AxiconFace(z_height=1.0, gradient=0.1)

mat = OpticalMaterial(glass_name="N-BK7")

axicon = GeneralLens(name = "My Axicon",
centre = (0,0,0),
direction=(0,0,1),
shape=shape,
surfaces=[face1,

face2],
materials=[mat])

src = CollimatedGaussletSource(origin=(0.001,0,-5.0),
direction=(0,0,1),
wavelength=0.5,
radius=1.0,
beam_waist=10.0,
resolution=10,
max_ray_len=50.0,
display='wires',

(continues on next page)

45

Raypier Documentation, Release 0.1

(continued from previous page)

opacity=0.2
)

###Add some sensors
capture = GaussletCapturePlane(centre=(0,0,13),

direction=(0,0,1),
width=5.0,
height=5.0)

field = EFieldPlane(centre=(0,0,13),
direction=(0,0,1),
detector=capture,
align_detector=True,
size=100,
width=2,
height=2)

image = IntensityImageView(field_probe=field)
surf = IntensitySurface(field_probe=field)

model = RayTraceModel(optics=[axicon],
sources=[src],
probes=[capture,field],
results=[image,surf])

model.configure_traits()

Here’s the model view.

46 Chapter 14. Examples

Raypier Documentation, Release 0.1

To get accurate results, turn up the resolution of the source object to about 30-40. Reduce the width of the EFieldPanel
to ~0.1 to see the centre of the beam more clearly.

In the XY-plane, the characteristic Bessel rings are clear.

Looking along the Z-axis (the optical axis), the constant width of the central beam is observed.

14.1. Simulating a Bessel Beam 47

Raypier Documentation, Release 0.1

14.2 Fresnel Diffraction From A BeamStop

We simply invert an aperture to create a beam-stop. Placing this the path of a collimated beam created interesting
Fresnel-diffraction effects, including a bright spot at the centre of the blocked path, known as the Spot of Arago.

from raypier.tracer import RayTraceModel
from raypier.sources import HexagonalRayFieldSource, ConfocalRayFieldSource
from raypier.lenses import PlanoConvexLens
from raypier.apertures import CircularAperture
from raypier.fields import EFieldPlane
from raypier.constraints import BaseConstraint
from raypier.intensity_image import IntensityImageView
from raypier.intensity_surface import IntensitySurface

from traits.api import Range, on_trait_change
from traitsui.api import View, Item

(continues on next page)

48 Chapter 14. Examples

Raypier Documentation, Release 0.1

(continued from previous page)

aperture = CircularAperture(centre=(0,0,10), direction=(0,0,1),
hole_diameter = 0.5, edge_width=0.001, invert=True)

src = HexagonalRayFieldSource(resolution=10.0, direction=(0,0,1),
radius=2.0,
wavelength=1.0)

probe = EFieldPlane(source=src,
centre=(0,0,50),
direction=(0,1,0),
exit_pupil_offset=100.,
width=2.0,
height=100.0,
size=100)

img = IntensityImageView(field_probe=probe)
surf = IntensitySurface(field_probe=probe)

class FocalPlane(BaseConstraint):
z_pos = Range(50.0,130.0, 57.73)

traits_view = View(Item("z_pos"))

def __init__(self, *args, **kwds):
super().__init__(*args, **kwds)
self.on_change_z_pos()

@on_trait_change("z_pos")
def on_change_z_pos(self):

probe.centre = (0,0,self.z_pos)

model = RayTraceModel(sources=[src], optics=[aperture],
probes=[probe], constraints=[FocalPlane()],
results=[img, surf])

model.configure_traits()

The model looks as follows:

14.2. Fresnel Diffraction From A BeamStop 49

Raypier Documentation, Release 0.1

However, the seem the detail in the Fresnel diffraction pattern, you need lots of Gausslets. Turn up the source resolution
to at least 40.

50 Chapter 14. Examples

Raypier Documentation, Release 0.1

14.2. Fresnel Diffraction From A BeamStop 51

Raypier Documentation, Release 0.1

14.3 Michelson Interferometer

We can create a Michelson interferometer from a non-polarising beam-splitter and two mirrors. The second mirror has
a spherical surface to generate a spherical wavefront at the detector-plane. The intensity distribution shows the classic
Newton’s Rings type pattern.

from raypier.api import RayTraceModel, UnpolarisingBeamsplitterCube,␣
→˓CollimatedGaussletSource, CircleShape, GeneralLens,\

SphericalFace, PlanarFace, OpticalMaterial, PolarisingBeamsplitterCube,␣
→˓ParallelRaySource,\

GaussletCapturePlane, EFieldPlane, IntensitySurface
from raypier.intensity_image import IntensityImageView

src=CollimatedGaussletSource(origin=(-30,0,0),
(continues on next page)

52 Chapter 14. Examples

Raypier Documentation, Release 0.1

(continued from previous page)

direction=(1,0,0),
radius=5.0,
beam_waist=10.0,
resolution=10.0,
E_vector=(0,1,0),
wavelength=1.0,
display="wires",
opacity=0.05,
max_ray_len=50.0)

bs = UnpolarisingBeamsplitterCube(centre=(0,0,0),
size=10.0)

shape = CircleShape(radius=10.0)

f1 = PlanarFace(mirror=True)
f2 = SphericalFace(curvature=2000.0, mirror=True)

m1 = GeneralLens(name="Mirror 1",
shape=shape,
surfaces=[f1],
centre=(0,20,0),
direction=(0,-1,0))

m2 = GeneralLens(name="Mirror 2",
shape=shape,
surfaces=[f2],
centre=(20,0,0),
direction=(-1,0,0))

cap = GaussletCapturePlane(centre=(0,-20,0),
direction=(0,1,0))

field = EFieldPlane(centre=(0,-20,0),
direction=(0,1,0),
detector=cap,
align_detector=True,
width=5.0,
height=5.0,
size=100)

image = IntensityImageView(field_probe=field)
surf = IntensitySurface(field_probe=field)

model = RayTraceModel(optics=[bs, m1, m2],
sources=[src],
probes=[field, cap],
results=[image, surf])

model.configure_traits()

14.3. Michelson Interferometer 53

Raypier Documentation, Release 0.1

The rendered model looks as follows:

In this case, the E-field evaluation plane is large enough that we can see the intensity profile directly in the model.
However, viewing it in a IntensitySurfaceView is more convenient.

54 Chapter 14. Examples

Raypier Documentation, Release 0.1

14.4 Temporal Focusing Microscope

Temporal focusing microscopy is an interesting variation on confocal microscopy where the the excitation beam is
spread out not only spatially (as for confocal microscopy) but also temporally, by using diffraction grating to disperse
a broadband laser beam. Typically, the method uses the exitation beam to generate 2-photon luminesence in the target
which is collected by a large-area detector. The image is formed by raster scanning the exitation focus.

This method makes a nice example of using a diffraction grating in Raypier, and a demonstration of using a Broad-
bandGaussletSource to model the propagation of a femtosecond ultra-fast pulse.

In this example, we leave out the raster-scanning system (which is relatively uninteresting) so we can focus (no pun
intended) on the temporal aspect.

Here’s our model:

from pathlib import Path

from traits.api import Range, Float, observe
from traitsui.api import View, Item, VGroup

from raypier.beamsplitters import UnpolarisingBeamsplitterCube
from raypier.lenses import PlanoConvexLens
from raypier.diffraction_gratings import RectangularGrating

(continues on next page)

14.4. Temporal Focusing Microscope 55

Raypier Documentation, Release 0.1

(continued from previous page)

from raypier.gausslet_sources import BroadbandGaussletSource, SingleGaussletSource
from raypier.tracer import RayTraceModel
from raypier.fields import EFieldPlane
from raypier.intensity_image import IntensityImageView
from raypier.intensity_surface import IntensitySurface
from raypier.probes import GaussletCapturePlane
from raypier.constraints import Constraint
from raypier.editors import NumEditor
from raypier.shapes import CircleShape
from raypier.general_optic import GeneralLens
from raypier.faces import AsphericFace, SphericalFace
from raypier.materials import OpticalMaterial

src = BroadbandGaussletSource(
origin = (0,0,0),
direction=(1.0,0.0,0.0),
E_vector=(0,0,1),
working_dist=0.0,
number=200,
wavelength = 1.0,
wavelength_extent = 0.03,
bandwidth_nm = 13.0,
beam_waist = 1000.0,
display='wires',
show_paras=False
)

src = SingleGaussletSource(
origin = (0,0,0),
direction=(1.,0.,0.0),
working_dist=0.0,
wavelength=0.8,
beam_waist=1.0, #in microns
E_vector=(0,0,1)
)

grating = RectangularGrating(centre=(220.0,0.,0.),
direction=(-1,1,0.),
length=15.,
width=20.0,
thickness=3.0,
lines_per_mm=1400.0)

grating.orientation = 45.5

lens1 = PlanoConvexLens(centre=(40.0,0.0,0.0),
direction=(-1,0,0),
diameter=25.0,
CT=6.0,
n_inside=1.6,
curvature=100.0)

(continues on next page)

56 Chapter 14. Examples

Raypier Documentation, Release 0.1

(continued from previous page)

Not used now. Use Aspheric instead.
lens2 = PlanoConvexLens(centre=(10.0,-30.0,0.0),

direction=(0,1,0),
diameter=25.0,
CT=6.0,
n_inside=1.6,
curvature=25.0)

Construct an aspheric objective using General Lens framework.
This is intended to represent Edmund Optics #66-330
circle = CircleShape(radius=10.0)
s1 = AsphericFace(z_height=0.0,

curvature=1./8.107287E-02,
conic_const=-6.196140E-01,
A6=-1.292772E-08, #I'm not 100% sure if the signs of the polynomial␣

→˓terms are right.
A8=-1.932447E-10
)

s2 = SphericalFace(curvature=-200.0,
z_height=-8.0)

mat = OpticalMaterial(glass_name="L-BAL35")
asphere = GeneralLens(name="Sample Objective",

centre=(10.0,-30.0,0.0),
direction=(0,1,0),
shape=circle,
surfaces=[s2,s1],
materials=[mat])

bs = UnpolarisingBeamsplitterCube(centre = (10.0, 0., 0.),
size=15.0,
)

capture = GaussletCapturePlane(centre=(10,-53.3,0),
direction=(0,1,0),
width=15.0,
height=15.0)

field = EFieldPlane(centre=(10,-53.3,0),
direction=(0,0,1),
detector=capture,
align_detector=True,
size=100,
width=0.1,
height=0.5,
time_ps=-7.0)

image = IntensityImageView(field_probe=field)
surf = IntensitySurface(field_probe=field)

class MyConstraint(Constraint):
(continues on next page)

14.4. Temporal Focusing Microscope 57

Raypier Documentation, Release 0.1

(continued from previous page)

time = Range(-15.0,15.0,-7.0)
time_offset = Float(0.0)

traits_view = View(VGroup(
Item("time", style='custom'),
Item("time_offset", editor=NumEditor)
))

@observe("time, time_offset")
def on_time_change(self, evt):

field.time_ps = self.time + self.time_offset

def animate(self, dt, count):
for i in range(count):

field.time_ps = self.time + self.time_offset + i*dt
U = field.intensity
image.save_plot(f"{Path.home()}/range_{i:03d}.png")

cst = MyConstraint()

model = RayTraceModel(optics = [bs, grating, lens1, asphere],
sources = [src], probes=[field, capture],
results=[image,surf],
constraints = [cst])

model.configure_traits()

The BroadbandGaussletSource creates a set of Gausslets with centre wavelength of 1.0 micron, and covering a total
wavelength range of 0.03 micron (i.e. 30nm). Thus the wavelengths cover the range from 0.85 micron to 1.15 micron.
We choose to create 200 Gausslets over this range. The E-field amplitudes of theses Gausslets has a Gaussian profile
centered on the centre-wavelength. This bandwidth is set to be 13nm. The Gausslets will actually be uniformly spaced
in frequency and will thus necessarily be non-uniformly spaced in terms of wavelength.

Since a single monochromatic Gausslet represents a periodic E-field amplitude (i.e. a sine-wave), a linear combination
of a finite set of such Gausslets is also periodic. It turns out our source creates a periodic pulse train where the interval
between pulses is given by the inverse of the frequency-spacing of the Gausslets. If you want very widely spaced pulses,
you thus need a smaller frequency-spacing and hence a larger number of rays. To keep the calculation times reasonable,
it’s best to use the shortest pulse-separation you can get away with to achieve your model objectives.

The 3D view of the model looks like this:

58 Chapter 14. Examples

Raypier Documentation, Release 0.1

The beam is lauched on the left side of this view and is propagated through the beam-splitter cube (the reflected beam
travelling upwards is discarded). The beam passes through a spherical lens with 200mm focal length. This focuses
the beam onto a diffraction grating. The grating disperses the beam into its 1st order of difraction and we can see the
lateral spread of the beam as it propagates back to the beam-splitter. The reflected beam from the beam-splitter passes
through a aspheric objective lens and comes to a focus. The intersting characteristic here is that when the dispersed
beams come into focus they also arrive back in phase, maximising the intensity at the focus.

The intensity profile of the beam is shown in the IntensityImageView object. The EFieldPlane object have a time trait
which defines the time at which the E-field is computed by advancing the phase of each wavelength accordingly. The
time value of 0.0 will correspond to a pulse centered at the origin of the source object. However, the periodic nature of
the beam means that the pulse can be found at repetitions of the pulse-interval along the beam-path. We have created
a Constraint object for this example simplify manual adjustment of the observation time-value and for the creation of
animations of a field-profile.

Here’s the animation of the pulse intensity from t=-9ps to -5ps:

The vertical axis of the image corresponds to the optical axis (the Y-axis) of the model at the object plane. Yes, the
pulse-envelop really does appear to move sideways (orthonally to the beam axis). Note, however, that the image colour
scale is always “auto-scaled” which can be deceiving.

14.4. Temporal Focusing Microscope 59

Raypier Documentation, Release 0.1

60 Chapter 14. Examples

CHAPTER

FIFTEEN

API REFERENCE

15.1 raypier.achromats

15.2 raypier.apertures

15.3 raypier.aspherics

15.4 raypier.bases

15.5 raypier.beamsplitters

15.6 raypier.beamstop

15.7 raypier.chirp_result

15.8 raypier.constraints

class raypier.constraints.BaseConstraint(*args, **kwds)
Bases: raypier.has_queue.HasQueue

class raypier.constraints.Constraint(*args, **kwds)
Bases: raypier.constraints.BaseConstraint

15.9 raypier.corner_cubes

15.10 raypier.decompositions

15.11 raypier.diffraction_gratings

15.12 raypier.dispertion

Created on 23 Nov 2018

61

Raypier Documentation, Release 0.1

author bryan

class raypier.dispersion.FusedSilica(absorption=0.0)
Bases: raypier.core.cmaterials.BaseDispersionCurve

A Dispersion curve for fused silica.

evaluate_n()
Calculates the complex refractive index for the given wavelengths.

Parameters wavelen (double[:]) – An array-like collection of wavelength, in microns.

Returns The refractive index for the given wavelength.

Return type complex128[:]

class raypier.dispersion.NamedDispersionCurve(name=None, book=None, filename=None,
absorption=0.0)

Bases: raypier.core.cmaterials.BaseDispersionCurve

A Dispersion curve obtained from the materials database (http://refractiveindex.info).

evaluate_n()
Calculates the complex refractive index for the given wavelengths.

Parameters wavelen (double[:]) – An array-like collection of wavelength, in microns.

Returns The refractive index for the given wavelength.

Return type complex128[:]

class raypier.dispersion.NondispersiveCurve(refractive_index=1.37, absorption=0.0)
Bases: raypier.core.cmaterials.BaseDispersionCurve

A Dispersion curve for a non-dispersive material with a given refractive index and absorption.

evaluate_n()
Calculates the complex refractive index for the given wavelengths.

Parameters wavelen (double[:]) – An array-like collection of wavelength, in microns.

Returns The refractive index for the given wavelength.

Return type complex128[:]

62 Chapter 15. API Reference

http://refractiveindex.info

Raypier Documentation, Release 0.1

15.12. raypier.dispertion 63

Raypier Documentation, Release 0.1

15.13 raypier.distortions

15.14 raypier.editors

15.15 raypier.ellipsoids

15.16 raypier.faces

15.17 raypier.fields

15.18 raypier.gausslet_sources

15.19 raypier.general_optic

15.20 raypier.intensity_image

15.21 raypier.intensity_surface

15.22 raypier.lenses

15.23 raypier.materials

15.24 raypier.mirrors

15.25 raypier.parabolics

15.26 raypier.prisms

15.27 raypier.probes

15.28 raypier.results

15.29 raypier.shapes

15.30 raypier.sources

15.31 raypier.splines

15.32 raypier.step_export

15.33 raypier.tracer

15.34 raypier.utils

15.35 raypier.vtk_algorithms

class raypier.vtk_algorithms.EmptyGridSource(*args, **kwds)
Bases: raypier.vtk_algorithms.PythonAlgorithmBase

64 Chapter 15. API Reference

Raypier Documentation, Release 0.1

RequestData(request, inInfo, outInfo)
Overwritten by subclass to execute the algorithm.

RequestInformation(request, inInfo, outInfo)
Overwritten by subclass to provide meta-data to downstream pipeline.

class raypier.vtk_algorithms.NumpyImageSource(*args, **kwds)
Bases: raypier.vtk_algorithms.EmptyGridSource

RequestData(request, inInfo, outInfo)
Overwritten by subclass to execute the algorithm.

class raypier.vtk_algorithms.PythonAlgorithmBase(*args, **kwds)
Bases: tvtk.tvtk_classes.python_algorithm.PythonAlgorithm

FillInputPortInformation(port, info)
Sets the required input type to InputType.

FillOutputPortInformation(port, info)
Sets the default output type to OutputType.

class InternalAlgorithm
Bases: object

Internal class. Do not use.

FillInputPortInformation(vtkself, port, info)

FillOutputPortInformation(vtkself, port, info)

Initialize(vtkself)

ProcessRequest(vtkself, request, inInfo, outInfo)

ProcessRequest(request, inInfo, outInfo)
Splits a request to RequestXXX() methods.

RequestData(request, inInfo, outInfo)
Overwritten by subclass to execute the algorithm.

RequestDataObject(request, inInfo, outInfo)
Overwritten by subclass to manage data object creation. There is not need to overwrite this class if the
output can be created based on the OutputType data member.

RequestInformation(request, inInfo, outInfo)
Overwritten by subclass to provide meta-data to downstream pipeline.

RequestUpdateExtent(request, inInfo, outInfo)
Overwritten by subclass to modify data request going to upstream pipeline.

get_input_data(inInfo, i, j)
Convenience method that returns an input data object given a vector of information objects and two indices.

get_output_data(outInfo, i)
Convenience method that returns an output data object given an information object and an index.

class raypier.vtk_algorithms.VTKAlgorithm
Bases: traits.has_traits.HasTraits

This is a superclass which can be derived to implement Python classes that work with vtkPythonAlgorithm. It
implements Initialize(), ProcessRequest(), FillInputPortInformation() and FillOutputPortInformation().

Initialize() sets the input and output ports based on data members.

ProcessRequest() calls RequestXXX() methods to implement various pipeline passes.

15.35. raypier.vtk_algorithms 65

Raypier Documentation, Release 0.1

FillInputPortInformation() and FillOutputPortInformation() set the input and output types based on data mem-
bers.

FillInputPortInformation(vtkself, port, info)
Sets the required input type to InputType.

FillOutputPortInformation(vtkself, port, info)
Sets the default output type to OutputType.

GetInputData(inInfo, i, j)
Convenience method that returns an input data object given a vector of information objects and two indices.

GetOutputData(outInfo, i)
Convenience method that returns an output data object given an information object and an index.

Initialize(vtkself)
Sets up number of input and output ports based on NumberOfInputPorts and NumberOfOutputPorts.

ProcessRequest(vtkself, request, inInfo, outInfo)
Splits a request to RequestXXX() methods.

RequestData(vtkself, request, inInfo, outInfo)
Overwritten by subclass to execute the algorithm.

RequestDataObject(vtkself, request, inInfo, outInfo)
Overwritten by subclass to manage data object creation. There is not need to overwrite this class if the
output can be created based on the OutputType data member.

RequestInformation(vtkself, request, inInfo, outInfo)
Overwritten by subclass to provide meta-data to downstream pipeline.

RequestUpdateExtent(vtkself, request, inInfo, outInfo)
Overwritten by subclass to modify data request going to upstream pipeline.

15.36 raypier.waveplates

15.37 raypier.windows

15.38 Raypier.Core

15.38.1 raypier.core.ctracer

Contains the core data-structures used in the tracing operation.

class raypier.core.ctracer.Distortion
Bases: object

A abstract base class to represents distortions on a face, a z-offset as a function of (x,y).

class raypier.core.ctracer.FaceList
Bases: object

A group of faces which share a transform

sync_transforms()
sets the transforms from the owner’s VTKTransform

66 Chapter 15. API Reference

Raypier Documentation, Release 0.1

class raypier.core.ctracer.GaussletBaseRayView
Bases: raypier.core.ctracer.RayArrayView

get_ray_list()
Returns the contents of this RayCollection as a list of Rays

class raypier.core.ctracer.GaussletCollection
Bases: object

A list-like collection of ray_t objects.

The RayCollection is the primary data-structure used in the ray-tracing operation.

The RayCollection is of variable length, in that it can grow as individual rays are added to it. Internally, the
memory allocated to the array of ray_t structures is re-allocated to increase its capacity.

add_gausslet()
Adds the given Ray instance to this collection

add_gausslet_list()
Adds the given list of Rays to this collection

clear_ray_list()
Empties this RayCollection (by setting the count to zero)

config_parabasal_rays()
Initialise the parabasal rays for a symmetric (i.e. circular) modes, using the base_ray data for wavelength,
and the given beam waist 1/e^2 radius. ‘working_dist’ indicates the distance from the base_ray origin to
the centre of the gaussian beam waist. Negative values imply a beam waist before the origin. ‘radius’ is
given in mm.

copy_as_array()
Returns the contents of this RayCollection as a numpy array (the data is always copied).

from_array()
Creates a new RayCollection from the given numpy array. The array dtype should be a ctracer.ray_dtype.
The data is copied into the RayCollection

get_gausslet_list()
Returns the contents of this RayCollection as a list of Rays

project_to_plane()
Project the rays in the collection onto the intersection with the given plane, defined by an origin point on
the plane and the plane normal vector.

reset_length()
Sets the length of all rays in this RayCollection to Infinity

class raypier.core.ctracer.InterfaceMaterial
Bases: object

Abstract base class for objects describing the materials characterics of a Face

class raypier.core.ctracer.Ray
Bases: object

Ray - a wrapper around the ray_t C-structure.

The Ray extension class exists mainly as a convenience for manipulation of single or small numbers of rays from
python. Large numbers of rays are more efficiently handled as either RayCollection objects, created in the tracing
process, or as numpy arrays with the ‘ray_dtype’ dtype.

E1_amp
Complex amplitude of the electric field polarised parallel to the E_vection.

15.38. Raypier.Core 67

Raypier Documentation, Release 0.1

E2_amp
Complex amplitude of the electric field polarised perpendicular to the E_vection

E_vector
Unit vector, perpendicular to the ray direction, which gives the direction of E-field polarisation

accumulated_path
The total optical path up to the start-point of this ray.

amplitude
E field amplitude

direction
direction of the ray, normalised to a unit vector

ellipticity
Provide the ratio of power in the RH circular polarisation to the LH circular polarisation. A value of zero
indicates linear polarisation. +1 indicate RH polarisation, -1 is LH polarisation. Or maybe the other way
round.

end_face_idx
Index of the terminating face, in the global face list (created for each tracing operation)

jones_vector
Jones polarisation vector expressed as a tuple (alpha, beta) where alpha and beta are complex

length
The length of the ray. This is infinite in unterminated rays

major_minor_axes
Find the vector giving the major and minor axes of the polarisation ellipse. For fully circularly polarised
light, the current E_vector will be returned

normal
normal vector for the face which created this ray

origin
Origin coordinates of the ray

parent_idx
Index of the parent ray in parent RayCollection

phase
An additional phase-factor for the ray. At present, this handles the ‘grating phase’ factor generated by
diffraction gratings. All other material surfaces leave this unchanged

power
Optical power for the ray

project_E()
Rotate the E_vector onto the given axis, projecting E1_amp and E2_amp as necessary.

ray_type_id
Used to distinguish rays created by reflection vs transmission or some other mechanism. Transmission->0,
Reflection->1

refractive_index
complex refractive index through which this ray is propagating

termination
the end-point of the ray (read only)

68 Chapter 15. API Reference

Raypier Documentation, Release 0.1

wavelength_idx
The wavelength of the ray in vacuum, in microns

class raypier.core.ctracer.RayArrayView
Bases: object

An abstract class to provide the API for ray_t member access from python / numpy

get_ray_list()
Returns the contents of this RayCollection as a list of Rays

class raypier.core.ctracer.RayCollection
Bases: raypier.core.ctracer.RayArrayView

A list-like collection of ray_t objects.

The RayCollection is the primary data-structure used in the ray-tracing operation.

The RayCollection is of variable length, in that it can grow as individual rays are added to it. Internally, the
memory allocated to the array of ray_t structures is re-allocated to increase its capacity.

add_ray()
Adds the given Ray instance to this collection

add_ray_list()
Adds the given list of Rays to this collection

clear_ray_list()
Empties this RayCollection (by setting the count to zero)

copy_as_array()
Returns the contents of this RayCollection as a numpy array (the data is always copied).

from_array()
Creates a new RayCollection from the given numpy array. The array dtype should be a ctracer.ray_dtype.
The data is copied into the RayCollection

get_ray_list()
Returns the contents of this RayCollection as a list of Rays

reset_length()
Sets the length of all rays in this RayCollection to Infinity

15.38.2 raypier.core.cmaterials

class raypier.core.cmaterials.BaseDispersionCurve
Bases: object

Base class for DispersionCurve objects. This extension class provides efficient C-API methods for evaluation of
the refractive index for a given wavelength, based on one of various dispersion functions (e.g. Sellmeier curves)
and a set of coefficients obtained from https://refractiveindex.info

Parameters
• formula_id (int, readonly) – Specifies the formula to use in evaluating this dispersion-

curve

• wavelength_min (float, readonly) – Minimum wavelength that can be evaluated, in
microns.

• wavelength_max (float, readonly) – Maximum wavelength that can be evaluated, in
microns.

15.38. Raypier.Core 69

https://refractiveindex.info

Raypier Documentation, Release 0.1

• coefs (list[float], readonly) – an array-like list of coefficients for the particular for-
mula used.

• absorption (float, readonly) – The (constant) absorption coefficient used to evaluate
the complex refractive index. Given in cm^-1.

evaluate_n()
Calculates the complex refractive index for the given wavelengths.

Parameters wavelen (double[:]) – An array-like collection of wavelength, in microns.

Returns The refractive index for the given wavelength.

Return type complex128[:]

class raypier.core.cmaterials.CircularApertureMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

Similar to the TransparentMaterial i.e. it generates an outgoing ray with identical direction, polarisation etc.
to the incoming ray. The material attenuates the E_field amplitudes according to the radial distance from the
surface origin.

Parameters
• outer_radius (double) – Rays passing outside this radius are not intercepted.

• radius (double) – The radius of the inner hole.

• edge_width (double) – Rays passing through the inner hole are attenuated according to
their proximity to the edge. The edge-width sets the width of the error-function (errf) used
to calculate the attenuation.

• invert (int) – Inverts the aperture to make a field-stop.

• origin ((double, double, double)) – The centre point of the aperture.

class raypier.core.cmaterials.CoatedDispersiveMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

A full implementation of the Fresnel Equations for a single-layer coated dielectric interface. The refractive index
for each ray is obtained by look up of the provided dispersio-curve objects for the materials on each side of the
interface.

Parameters
• dispersion_inside (raypier.core.cmaterials.BaseDispersionCurve) – The dis-

persion curve for the inside side of the interface

• dispersion_outside (raypier.core.cmaterials.BaseDispersionCurve) – The
dispersion curve for the “outside” of the interface

• dispersion_coating (raypier.core.cmaterials.BaseDispersionCurve) – The
dispersion curve for the coating material

• coating_thickness (double) – The coating thickness, in microns

• reflection_threshold (double) – Sets the amplitude threshold for generating a reflected
ray.

• transmission_threshold (double) – Sets the amplitude threshold for generating a trans-
mitted ray.

class raypier.core.cmaterials.DielectricMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

Simulates Fresnel reflection and refraction at a normal dielectric interface.

70 Chapter 15. API Reference

Raypier Documentation, Release 0.1

The surface normal is assumed to be pointing “out” of the material.

Parameters
• n_inside (complex) – The refractive index on the inside of the material interface

• n_outside (complex) – The refractive index on the outside of the material interface

class raypier.core.cmaterials.DiffractionGratingMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

A specialised material modelling the behaviour of a reflective diffraction grating.

Parameters
• lines_per_mm (double) – The grating line density

• order (int) – The order-of-diffraction

• efficiency (double) – A value from 0.0 to 1.0 giving the reflection efficiency of the grat-
ing

• origin ((double, double, double)) – A vector (3-tuple) indicating the origin of the
grating. Unimportant in most cases. This affects the “grating phase” which is unobservable
in most situations.

class raypier.core.cmaterials.FullDielectricMaterial
Bases: raypier.core.cmaterials.DielectricMaterial

Model for dielectric using full Fresnel equations to give true phase and amplitude response

Parameters
• reflection_threshold (double) – Sets the amplitude threshold for generating a reflected

ray.

• transmission_threshold (double) – Sets the amplitude threshold for generating a trans-
mitted ray.

class raypier.core.cmaterials.LinearPolarisingMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

Simulates a perfect polarising beam splitter. P-polarisation is 100% transmitted while S- is reflected

class raypier.core.cmaterials.OpaqueMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

A perfect absorber i.e. it generates no rays

class raypier.core.cmaterials.PECMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

Simulates a Perfect Electrical Conductor. I.e. incident rays are reflected with 100% reflectivity.

class raypier.core.cmaterials.PartiallyReflectiveMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

A simple materials with a fixed reflectivity.

Parameters reflectivity (double) – The material power-reflectivity given as a value from 0.0.
to 1.0

class raypier.core.cmaterials.RectangularApertureMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

A rectangular aperture.

15.38. Raypier.Core 71

Raypier Documentation, Release 0.1

Parameters
• outer_width (double) –

• outer_height (double) –

• width (double) –

• height (double) –

• edge_width (double) –

• invert (int) –

• origin ((double, double, double)) –

class raypier.core.cmaterials.ResampleGaussletMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

This is a special pseudo-material which generates new rays not by the normal process of refraction or reflection
of an incoming ray, but by computing a new set of Gausslets by computing the E-field at a set of grid points and
launching new Gausslets from these points.

The material needs the set of new launch-positions to be given up front (i.e. before tracing).

Parameters
• size (int) – The size of the new GaussletCollection to allocate up front.

• eval_func (callable) – A callable taking a GaussletCollection as its single argument.
The new outgoing rays will be returned by this callable.

class raypier.core.cmaterials.SingleLayerCoatedMaterial
Bases: raypier.core.cmaterials.FullDielectricMaterial

A material with a single-layer dielectric coating at the interface.

Parameters
• n_coating (complex) – The complex refractive index for the coating.

• thickness (double) – The thickness of the coating in microns

class raypier.core.cmaterials.TransparentMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

A perfect transmitter i.e. it generates an outgoing ray with identical direction, polarisation etc. to the incoming
ray. It does project the polarisation vectors to it’s S- and P-directions, however.

class raypier.core.cmaterials.WaveplateMaterial
Bases: raypier.core.ctracer.InterfaceMaterial

An idealised optical retarder.

Parameters
• retardance (double) – The optical retardance, given in terms of numbers-of-wavelengths.

• fast_axis ((double, double, double)) – A vector giving the “fast” polarisation axis

apply_retardance()
Applies the retardance to the given Ray object.

Parameters r (raypier.core.ctracer.Ray) – an input Ray object.

Returns a new Ray instance

Return type raypier.core.ctracer.Ray

72 Chapter 15. API Reference

Raypier Documentation, Release 0.1

15.38.3 raypier.core.cfaces

Cython module for Face definitions

class raypier.core.cfaces.AsphericFace
Bases: raypier.core.cfaces.ShapedFace

This is the general aspheric lens surface formula.

curvature = radius of curvature

class raypier.core.cfaces.AxiconFace
Bases: raypier.core.cfaces.ShapedFace

While technically, we can use the conic surface to generate a cone, it requires setting some parameters to infinity
which is often inaccurate to compute.

The gradient is the slope of the sides, dz/dr

class raypier.core.cfaces.ConicRevolutionFace
Bases: raypier.core.cfaces.ShapedFace

This is surface of revolution formed from a conic section. Spherical and ellipsoidal faces are a special case of
this.

curvature = radius of curvature

class raypier.core.cfaces.DistortionFace
Bases: raypier.core.cfaces.ShapedFace

This class wraps another ShapedFace object, and applies a small distortion to it’s surface geometry. The distortion
is given by an instance of a Distortion subclass

15.38.4 raypier.core.cfields

Core C-level algorimths for computing the electric field from a set of traced rays.

15.38.5 raypier.core.cshapes

15.38.6 raypier.core.cdistortions

class raypier.core.cdistortions.SimpleTestZernikeJ7
Bases: raypier.core.ctracer.Distortion

Implement one low-order Zernike poly for testing purposes.

class raypier.core.cdistortions.ZernikeDistortion
Bases: raypier.core.ctracer.Distortion

15.38. Raypier.Core 73

Raypier Documentation, Release 0.1

15.38.7 raypier.core.tracer

Core python classes for tracing operations.

15.38.8 raypier.core.fields

Functions relating to the evaluation of the optical E-field by summation of General Astigmatic Gaussian Beams

class raypier.core.fields.EFieldSummation(gausslet_collection, wavelengths=None, blending=1.0)
Bases: object

For situations where you wish to evaluate the E-field from a set of Gausslets with different sets of evaluation
points, this class provides a small optimisation by performing the maths to convert ray-intercepts to Gaussian
mode parameters up front.

evaluate(points, time_ps=0.0)
Called to calculate the E-field for the given points.

raypier.core.fields.ExtractGamma(gausslet_collection, blending=1.0)
Used in Testing

raypier.core.fields.Gamma(z, A, B, C)
Used in testing

raypier.core.fields.eval_Efield_from_gausslets(gausslet_collection, points, wavelengths=None,
blending=1.0, time_ps=0.0, **kwds)

Calculates the vector E-field is each of the points given. The returned array of field-vectors will have the same
length as points and has numpy.complex128 dtype.

Parameters
• gc (GaussletCollection) – The set of Gausslets for which the field should be calculated

• points (ndarray[N,3]) – An array of shape (N,3) giving the points at which the field will
be evaluated.

• wavelengths (ndarray[]) – A 1d array containing the wavelengths to be used for the field
calculation, overriding the wavelengths data contained by the GaussletCollection object.

• blending (float) – The 1/width of each Gaussian mode at the evaluation points. A value
of unity (the default), means the parabasal rays are determined to be the 1/e point in the field
amplitude.

raypier.core.fields.evaluate_modes(neighbour_x, neighbour_y, dx, dy, blending=1.0)
For each ray in rays, use its nearest neighbours to compute the best fit for the Astigmatic Gaussian Beam param-
eters.

rays - an array of ray_t with shape (N,) x,y,dx,dy - array of shape (N,6)

For N rays, return a Nx3 complex array of coeffs

raypier.core.fields.evaluate_neighbours(rays, neighbours_idx)
For each of a rays neighbours, we need to project the neighbour back onto the plane containing the main rays
origin, to obtain the (x,y) cordinate for the neighbour ray, relative to the main ray origin

rays - a ray_t array of length N neighbours_idx - a array on ints of shape (N,6)

returns - a 5-tuple (rays, x,y,dx,dy) where x,y are N*6 arrays for the coordinate of each neighbour. dx
and dy represent the change in direction of the neighbouring rays (i.e. curvature of the wavefront). The
returns rays are the subset of the input rays with 6 neighbours (i.e. edge-rays are dropped).

74 Chapter 15. API Reference

Raypier Documentation, Release 0.1

raypier.core.fields.project_to_sphere(rays, centre=(0, 0, 0), radius=10.0)
project the given set of rays back to their intercept with a sphere at the given centre and radius.

rays - an array of ray_t dtype

15.38.9 raypier.core.gausslets

15.38.10 raypier.core.find_focus

Utility module

raypier.core.find_focus.find_focus(ray_origins, ray_directions, weights=None)
givens Nx3 arrays for ray origin and directions, return the 3D point of closest intersection, found in the least-
squares sense.

See https://math.stackexchange.com/q/1762491

15.38.11 raypier.core.utils

raypier.core.utils.Convert_to_SP(input_v, normal_v, E1_vector, E1_amp, E2_amp)
All inputs are 2D arrays

raypier.core.utils.dotprod(a, b)
dot-product along last axis

raypier.core.utils.normaliseVector(a)
normalise a (3,) vector or a (n,3) array of vectors

15.38.12 raypier.core.unwrap2d

Functions for performing 2D phase unwrapping.

raypier.core.unwrap2d.unwrap2d(phase_array, anchor=(0, 0))
A basic phase unwrapper using numpy.unwrap and the Itoh method.

phase_array - a (N,M) shaped array of values in the range -pi .. +pi

15.38. Raypier.Core 75

https://math.stackexchange.com/q/1762491

Raypier Documentation, Release 0.1

76 Chapter 15. API Reference

CHAPTER

SIXTEEN

INDICES AND TABLES

• genindex

• modindex

• search

77

Raypier Documentation, Release 0.1

78 Chapter 16. Indices and tables

PYTHON MODULE INDEX

r
raypier.constraints, 61
raypier.core.cdistortions, 73
raypier.core.cfaces, 73
raypier.core.cmaterials, 69
raypier.core.cshapes, 73
raypier.core.ctracer, 66
raypier.core.fields, 74
raypier.core.find_focus, 75
raypier.core.gausslets, 32
raypier.core.unwrap2d, 75
raypier.core.utils, 75
raypier.dispersion, 61
raypier.gausslets, 32
raypier.vtk_algorithms, 64

79

Raypier Documentation, Release 0.1

80 Python Module Index

INDEX

A
accumulated_path (raypier.core.ctracer.Ray attribute),

68
add_gausslet() (rayp-

ier.core.ctracer.GaussletCollection method),
67

add_gausslet_list() (rayp-
ier.core.ctracer.GaussletCollection method),
67

add_ray() (raypier.core.ctracer.RayCollection method),
69

add_ray_list() (raypier.core.ctracer.RayCollection
method), 69

amplitude (raypier.core.ctracer.Ray attribute), 68
AngleDecomposition (class in raypier.gausslets), 32
apply_retardance() (rayp-

ier.core.cmaterials.WaveplateMaterial
method), 72

AsphericFace (class in raypier.core.cfaces), 73
AxiconFace (class in raypier.core.cfaces), 73

B
BaseConstraint (class in raypier.constraints), 61
BaseDispersionCurve (class in rayp-

ier.core.cmaterials), 69
blending (raypier.gausslets.raypier.gausslets.PositionDecompositionPlane

attribute), 32

C
CircularApertureMaterial (class in rayp-

ier.core.cmaterials), 70
clear_ray_list() (rayp-

ier.core.ctracer.GaussletCollection method),
67

clear_ray_list() (raypier.core.ctracer.RayCollection
method), 69

CoatedDispersiveMaterial (class in rayp-
ier.core.cmaterials), 70

config_parabasal_rays() (rayp-
ier.core.ctracer.GaussletCollection method),
67

ConicRevolutionFace (class in raypier.core.cfaces), 73

Constraint (class in raypier.constraints), 61
Convert_to_SP() (in module raypier.core.utils), 75
copy_as_array() (rayp-

ier.core.ctracer.GaussletCollection method),
67

copy_as_array() (raypier.core.ctracer.RayCollection
method), 69

curvature (raypier.gausslets.raypier.gausslets.PositionDecompositionPlane
attribute), 32

D
DielectricMaterial (class in raypier.core.cmaterials),

70
DiffractionGratingMaterial (class in rayp-

ier.core.cmaterials), 71
direction (raypier.core.ctracer.Ray attribute), 68
display (raypier.sources.BaseRaySource attribute), 23
Distortion (class in raypier.core.ctracer), 66
DistortionFace (class in raypier.core.cfaces), 73
dotprod() (in module raypier.core.utils), 75

E
E1_amp (raypier.core.ctracer.Ray attribute), 67
E2_amp (raypier.core.ctracer.Ray attribute), 67
E_vector (raypier.core.ctracer.Ray attribute), 68
EFieldSummation (class in raypier.core.fields), 74
ellipticity (raypier.core.ctracer.Ray attribute), 68
EmptyGridSource (class in raypier.vtk_algorithms), 64
end_face_idx (raypier.core.ctracer.Ray attribute), 68
eval_Efield_from_gausslets() (in module rayp-

ier.core.fields), 74
evaluate() (raypier.core.fields.EFieldSummation

method), 74
evaluate_modes() (in module raypier.core.fields), 74
evaluate_n() (raypier.core.cmaterials.BaseDispersionCurve

method), 70
evaluate_n() (raypier.dispersion.FusedSilica method),

62
evaluate_n() (raypier.dispersion.NamedDispersionCurve

method), 62
evaluate_n() (raypier.dispersion.NondispersiveCurve

method), 62

81

Raypier Documentation, Release 0.1

evaluate_neighbours() (in module rayp-
ier.core.fields), 74

ExtractGamma() (in module raypier.core.fields), 74

F
FaceList (class in raypier.core.ctracer), 66
FillInputPortInformation() (rayp-

ier.vtk_algorithms.PythonAlgorithmBase
method), 65

FillInputPortInformation() (rayp-
ier.vtk_algorithms.PythonAlgorithmBase.InternalAlgorithm
method), 65

FillInputPortInformation() (rayp-
ier.vtk_algorithms.VTKAlgorithm method),
66

FillOutputPortInformation() (rayp-
ier.vtk_algorithms.PythonAlgorithmBase
method), 65

FillOutputPortInformation() (rayp-
ier.vtk_algorithms.PythonAlgorithmBase.InternalAlgorithm
method), 65

FillOutputPortInformation() (rayp-
ier.vtk_algorithms.VTKAlgorithm method),
66

find_focus() (in module raypier.core.find_focus), 75
from_array() (raypier.core.ctracer.GaussletCollection

method), 67
from_array() (raypier.core.ctracer.RayCollection

method), 69
FullDielectricMaterial (class in rayp-

ier.core.cmaterials), 71
FusedSilica (class in raypier.dispersion), 62

G
Gamma() (in module raypier.core.fields), 74
GaussletBaseRayView (class in raypier.core.ctracer),

66
GaussletCollection (class in raypier.core.ctracer), 67
get_gausslet_list() (rayp-

ier.core.ctracer.GaussletCollection method),
67

get_input_data() (rayp-
ier.vtk_algorithms.PythonAlgorithmBase
method), 65

get_output_data() (rayp-
ier.vtk_algorithms.PythonAlgorithmBase
method), 65

get_ray_list() (rayp-
ier.core.ctracer.GaussletBaseRayView
method), 67

get_ray_list() (raypier.core.ctracer.RayArrayView
method), 69

get_ray_list() (raypier.core.ctracer.RayCollection
method), 69

GetInputData() (rayp-
ier.vtk_algorithms.VTKAlgorithm method),
66

GetOutputData() (rayp-
ier.vtk_algorithms.VTKAlgorithm method),
66

H
height (raypier.gausslets.AngleDecomposition at-

tribute), 32

I
Initialize() (raypier.vtk_algorithms.PythonAlgorithmBase.InternalAlgorithm

method), 65
Initialize() (raypier.vtk_algorithms.VTKAlgorithm

method), 66
InterfaceMaterial (class in raypier.core.ctracer), 67
ipython_view() (raypier.tracer.RayTraceModel

method), 17

J
jones_vector (raypier.core.ctracer.Ray attribute), 68

L
length (raypier.core.ctracer.Ray attribute), 68
LinearPolarisingMaterial (class in rayp-

ier.core.cmaterials), 71

M
major_minor_axes (raypier.core.ctracer.Ray attribute),

68
mask (raypier.gausslets.AngleDecomposition attribute),

32
max_angle (raypier.gausslets.AngleDecomposition at-

tribute), 32
max_ray_len (raypier.sources.BaseRaySource at-

tribute), 23
module

raypier.constraints, 61
raypier.core.cdistortions, 73
raypier.core.cfaces, 73
raypier.core.cmaterials, 69
raypier.core.cshapes, 73
raypier.core.ctracer, 66
raypier.core.fields, 74
raypier.core.find_focus, 75
raypier.core.gausslets, 32
raypier.core.unwrap2d, 75
raypier.core.utils, 75
raypier.dispersion, 61
raypier.gausslets, 32
raypier.vtk_algorithms, 64

82 Index

Raypier Documentation, Release 0.1

N
NamedDispersionCurve (class in raypier.dispersion),

62
NondispersiveCurve (class in raypier.dispersion), 62
normal (raypier.core.ctracer.Ray attribute), 68
normaliseVector() (in module raypier.core.utils), 75
NumpyImageSource (class in raypier.vtk_algorithms), 65

O
opacity (raypier.sources.BaseRaySource attribute), 23
OpaqueMaterial (class in raypier.core.cmaterials), 71
origin (raypier.core.ctracer.Ray attribute), 68

P
parent_idx (raypier.core.ctracer.Ray attribute), 68
PartiallyReflectiveMaterial (class in rayp-

ier.core.cmaterials), 71
PECMaterial (class in raypier.core.cmaterials), 71
phase (raypier.core.ctracer.Ray attribute), 68
power (raypier.core.ctracer.Ray attribute), 68
ProcessRequest() (rayp-

ier.vtk_algorithms.PythonAlgorithmBase
method), 65

ProcessRequest() (rayp-
ier.vtk_algorithms.PythonAlgorithmBase.InternalAlgorithm
method), 65

ProcessRequest() (rayp-
ier.vtk_algorithms.VTKAlgorithm method),
66

project_E() (raypier.core.ctracer.Ray method), 68
project_to_plane() (rayp-

ier.core.ctracer.GaussletCollection method),
67

project_to_sphere() (in module raypier.core.fields),
74

PythonAlgorithmBase (class in rayp-
ier.vtk_algorithms), 65

PythonAlgorithmBase.InternalAlgorithm (class in
raypier.vtk_algorithms), 65

R
radius (raypier.gausslets.raypier.gausslets.PositionDecompositionPlane

attribute), 32
Ray (class in raypier.core.ctracer), 67
ray_type_id (raypier.core.ctracer.Ray attribute), 68
RayArrayView (class in raypier.core.ctracer), 69
RayCollection (class in raypier.core.ctracer), 69
raypier.constraints

module, 61
raypier.core.cdistortions

module, 73
raypier.core.cfaces

module, 73

raypier.core.cmaterials
module, 69

raypier.core.cshapes
module, 73

raypier.core.ctracer
module, 66

raypier.core.fields
module, 74

raypier.core.find_focus
module, 75

raypier.core.gausslets
module, 32

raypier.core.unwrap2d
module, 75

raypier.core.utils
module, 75

raypier.dispersion
module, 61

raypier.gausslets
module, 32

raypier.gausslets.PositionDecompositionPlane
(class in raypier.gausslets), 32

raypier.sources.BaseRaySource (built-in class), 23
raypier.sources.SingleRaySource (built-in class),

23
raypier.tracer.RayTraceModel (built-in class), 17
raypier.vtk_algorithms

module, 64
RectangularApertureMaterial (class in rayp-

ier.core.cmaterials), 71
refractive_index (raypier.core.ctracer.Ray attribute),

68
RequestData() (rayp-

ier.vtk_algorithms.EmptyGridSource method),
64

RequestData() (rayp-
ier.vtk_algorithms.NumpyImageSource
method), 65

RequestData() (rayp-
ier.vtk_algorithms.PythonAlgorithmBase
method), 65

RequestData() (raypier.vtk_algorithms.VTKAlgorithm
method), 66

RequestDataObject() (rayp-
ier.vtk_algorithms.PythonAlgorithmBase
method), 65

RequestDataObject() (rayp-
ier.vtk_algorithms.VTKAlgorithm method),
66

RequestInformation() (rayp-
ier.vtk_algorithms.EmptyGridSource method),
65

RequestInformation() (rayp-
ier.vtk_algorithms.PythonAlgorithmBase

Index 83

Raypier Documentation, Release 0.1

method), 65
RequestInformation() (rayp-

ier.vtk_algorithms.VTKAlgorithm method),
66

RequestUpdateExtent() (rayp-
ier.vtk_algorithms.PythonAlgorithmBase
method), 65

RequestUpdateExtent() (rayp-
ier.vtk_algorithms.VTKAlgorithm method),
66

ResampleGaussletMaterial (class in rayp-
ier.core.cmaterials), 72

reset_length() (rayp-
ier.core.ctracer.GaussletCollection method),
67

reset_length() (raypier.core.ctracer.RayCollection
method), 69

resolution (raypier.gausslets.raypier.gausslets.PositionDecompositionPlane
attribute), 32

S
sample_spacing (rayp-

ier.gausslets.AngleDecomposition attribute),
32

scale_factor (raypier.sources.BaseRaySource at-
tribute), 23

show_normals (raypier.sources.BaseRaySource at-
tribute), 23

show_start (raypier.sources.BaseRaySource attribute),
23

SimpleTestZernikeJ7 (class in rayp-
ier.core.cdistortions), 73

SingleLayerCoatedMaterial (class in rayp-
ier.core.cmaterials), 72

sync_transforms() (raypier.core.ctracer.FaceList
method), 66

T
termination (raypier.core.ctracer.Ray attribute), 68
TransparentMaterial (class in rayp-

ier.core.cmaterials), 72

U
unwrap2d() (in module raypier.core.unwrap2d), 75

V
VTKAlgorithm (class in raypier.vtk_algorithms), 65

W
wavelength_idx (raypier.core.ctracer.Ray attribute), 68
wavelength_list (raypier.sources.BaseRaySource at-

tribute), 23
WaveplateMaterial (class in raypier.core.cmaterials),

72

width (raypier.gausslets.AngleDecomposition attribute),
32

Z
ZernikeDistortion (class in raypier.core.cdistortions),

73

84 Index

	Introduction to Raypier
	Build and Installation
	The Components of a Raypier Model
	Basic Usage
	Exploring the GUI
	Jupyter Integration
	RayCollection and Ray Objects
	Creating RayCollections

	Ray Sources
	Ray Field Sources

	The General Optic Framework
	Shapes
	Surfaces
	Materials

	Other Optic Types
	Apertures
	Prisms
	Waveplates
	Beamsplitters
	Diffraction Gratings
	Corner-cube retro-reflectors
	Off-axis ellisoids

	Gaussian Beamlet Propagation
	Raypier Gausslet Implementation
	Evaluating the E-field
	Beam Decomposition

	Distortions
	Zernike Polymonial Distortions

	Cython branch: How to Add New Optics
	Creating a new Face
	Creating a new Traceable
	Custom Interface Materials
	Cython Tips and Tricks

	Examples
	Simulating a Bessel Beam
	Fresnel Diffraction From A BeamStop
	Michelson Interferometer
	Temporal Focusing Microscope

	API Reference
	raypier.achromats
	raypier.apertures
	raypier.aspherics
	raypier.bases
	raypier.beamsplitters
	raypier.beamstop
	raypier.chirp_result
	raypier.constraints
	raypier.corner_cubes
	raypier.decompositions
	raypier.diffraction_gratings
	raypier.dispertion
	raypier.distortions
	raypier.editors
	raypier.ellipsoids
	raypier.faces
	raypier.fields
	raypier.gausslet_sources
	raypier.general_optic
	raypier.intensity_image
	raypier.intensity_surface
	raypier.lenses
	raypier.materials
	raypier.mirrors
	raypier.parabolics
	raypier.prisms
	raypier.probes
	raypier.results
	raypier.shapes
	raypier.sources
	raypier.splines
	raypier.step_export
	raypier.tracer
	raypier.utils
	raypier.vtk_algorithms
	raypier.waveplates
	raypier.windows
	Raypier.Core
	raypier.core.ctracer
	raypier.core.cmaterials
	raypier.core.cfaces
	raypier.core.cfields
	raypier.core.cshapes
	raypier.core.cdistortions
	raypier.core.tracer
	raypier.core.fields
	raypier.core.gausslets
	raypier.core.find_focus
	raypier.core.utils
	raypier.core.unwrap2d

	Indices and tables
	Python Module Index
	Index

